MIT researchers have found a bold new way to approach one of science’s biggest mysteries: is gravity truly a quantum force?
By chilling a tiny mirror to near absolute zero using lasers — a method traditionally used in atomic physics — they’ve opened a new experimental window into the intersection of quantum mechanics and gravity. This fusion of cutting-edge cooling and classical tools might finally let scientists observe whether gravity behaves like other quantum forces, a question that has puzzled physicists for decades.
The Gravity Puzzle: Is It Quantum?
One of the most profound open questions in modern physics is: “Is gravity quantum?”
While the other fundamental forces—electromagnetic, weak nuclear, and strong nuclear—have been successfully described by quantum theory, gravity still stands apart. So far, scientists haven’t been able to create a consistent quantum theory of gravity, leaving a major gap in our understanding of the universe.
“Theoretical physicists have proposed many possible scenarios, from gravity being inherently classical to fully quantum, but the debate remains unresolved because we’ve never had a clear way to test gravity’s quantum nature in the lab,” says Dongchel Shin, a PhD candidate in the MIT Department of Mechanical Engineering (MechE). “The key to answering this lies in preparing mechanical systems that are massive enough to feel gravity, yet quiet enough — quantum enough — to reveal how gravity interacts with them.”
You must be logged in to post a comment.