Entangling a live tardigrade, radiation warning on anti-5G accessories

Tardigrades are tiny organisms that can survive extreme environments including being chilled to near absolute zero. At these temperatures quantum effects such as entanglement become dominant, so perhaps it is not surprising that a team of physicists has used a chilled tardigrade to create an entangled qubit.

According to a preprint on the arXiv server, the team cooled a tardigrade to below 10 mK and then used it as the dielectric in a capacitor that itself was part of a superconducting transmon qubit. The team says that it then entangled the qubit – tardigrade and all – with another superconducting qubit. The team then warmed up the tardigrade and brought it back to life.

To me, the big question is whether the tardigrade was alive when it was entangled. My curiosity harks back to the now outdated idea that living organisms are “too warm and wet” to partake in quantum processes. Today, scientists believe that some biological processes such as magnetic navigation and perhaps even photosynthesis rely on quantum effects such as entanglement. So perhaps it is possible that the creature was alive and entangled at the same time.

In the preprint, the researchers say that the entangled tardigrade was in a latent state of life called cryptobiosis. They say they have shown that it is “possible to do a quantum and hence a chemical study of a system, without destroying its ability to function biologically”.

Keep reading

World’s 1st multinode quantum network is a breakthrough for the quantum internet

Scientists have gotten one step closer to a quantum internet by creating the world’s first multinode quantum network. 

Researchers at the QuTech research center in the Netherlands created the system, which is made up of three quantum nodes entangled by the spooky laws of quantum mechanics that govern subatomic particles. It is the first time that more than two quantum bits, or “qubits,” that do the calculations in quantum computing have been linked together as “nodes,” or network endpoints. 

Researchers expect the first quantum networks to unlock a wealth of computing applications that can’t be performed by existing classical devices — such as faster computation and improved cryptography.

Keep reading