For some who find the Fibonacci sequence used to entanglement qubits to be baffling, which is a crazy topic we published a video about here, you’d best grab onto something solid.
Recently, a group of scientists discovered that quantum systems may mimic wormholes, theoretical shortcuts in spacetime, in that they permit the instantaneous transfer of information between distant places.
Despite the fact that quantum particles are unaffected by gravity in the same manner that classical objects are, the study team believes their results may have ramifications for investigating quantum gravity. The study appeared this week in the journal Nature.
“The relationship between quantum entanglement, spacetime, and quantum gravity is one of the most important questions in fundamental physics and an active area of theoretical research,” California Institute of Technology physicist Maria Spiropulu, the paper’s primary author, claimed in a press release. “We are excited to take this small step toward testing these ideas on quantum hardware and will keep going.“
It’s time to take a breather. It should be made clear that the researchers did not really transmit quantum information via a spacetime rip, which in principle would unite previously disconnected parts of the universe.
Think of it as folding a sheet of paper in half and sticking a pencil in between the folds. Since the paper represents spacetime, you may use it as a gateway to connect two seemingly inaccessible locations.