Scientists revive microbes from 100 million years ago

Scientists have successfully revived microbes that had lain dormant at the bottom of the sea since the age of the dinosaurs, allowing the organisms to eat and even multiply after eons in the deep.

Their research sheds light on the remarkable survival power of some of Earth’s most primitive species, which can exist for tens of millions of years with barely any oxygen or food before springing back to life in the lab.

A team led by the Japan Agency for Marine-Earth Science and Technology analysed ancient sediment samples deposited more than 100 million years ago on the seabed of the South Pacific.

The region is renowned for having far fewer nutrients in its sediment than normal, making it a far-from-ideal site to maintain life over millennia.

The team incubated the samples to help coax the microbes out of their epoch-spanning slumber.

Astonishingly, they were able to revive nearly all of the microorganisms.

“When I found them, I was first sceptical whether the findings are from some mistake or a failure in the experiment,” said lead author Yuki Morono.

“We now know that there is no age limit for (organisms in the) sub-seafloor biosphere,” he told AFP.

Keep reading

MACHINES CAN LEARN UNSUPERVISED ‘AT SPEED OF LIGHT’ AFTER AI BREAKTHROUGH, SCIENTISTS SAY

Researchers have achieved a breakthrough in the development of artificial intelligence by using light instead of electricity to perform computations.

The new approach significantly improves both the speed and efficiency of machine learning neural networks – a form of AI that aims to replicate the functions performed by a human brain in order to teach itself a task without supervision.

Current processors used for machine learning are limited in performing complex operations by the power required to process the data. The more intelligent the task, the more complex the data, and therefore the greater the power demands.

Such networks are also limited by the slow transmission of electronic data between the processor and the memory.

Researchers from George Washington University in the US discovered that using photons within neural network (tensor) processing units (TPUs) could overcome these limitations and create more powerful and power-efficient AI.

Keep reading

This New, Non-Cuttable Material Is Virtually Indestructible

A new material called Proteus is billed as just 15 percent the density of steel, but completely resistant to being cut through. That means cyclists around the world may be blessed with truly inviolable locks for the first time ever.

People who want to steal the outdoor furniture from restaurant patios will have to cut the furniture now instead of the cable lock. Most importantly, TV writers will have to work even harder to make it seem easy to get into a locked electrical storage or nuclear facility.

Researchers in Germany and the U.K. have teamed up to make a material they say uses harmony and vibration to thwart any attempts to cut it. “Our architecture derives its extreme hardness from the local resonance between the embedded ceramics in a flexible cellular matrix and the attacking tool, which produces high-frequency vibrations at the interface,” they explain in their paper.

Keep reading