An octopus-like soft robot can unfurl itself inside the skull on top of the brain, a new study finds. The novel gadget may lead to minimally invasive ways to investigate the brain and implant brain-computer interfaces, researchers say.
In order to analyze the brain after traumatic injuries, help treat disorders such as seizures, and embed brain-computer interfaces, scientists at times lay grids of electrodes onto the surface of the brain. These electrocorticography grids can capture higher-quality recordings of brain signals than electroencephalography data gathered by electrodes on the scalp, but are also less invasive than probes stuck into the brain.
However, placing electrocorticography grids onto the brain typically involves creating openings in the skull at least as large as these arrays, leaving holes up to 100 square centimeters. These surgical operations may result in severe complications, such as inflammation and scarring.
Now scientists have developed a new soft robot they can place into the skull through a tiny hole. In experiments on a minipig, they showed the device could unfold like a ship in a bottle to deploy an electrocorticography grid 4 centimeters wide, all of it fitting into a space only roughly 1 millimeter wide. This “enabled the implant to navigate through the narrow gap between the skull and the brain,” says study senior author Stéphanie Lacour, a neural engineer and director of the Federal Polytechnic School of Lausanne’s Neuro-X Institute in Switzerland.