Scientists mimicking the Big Bang accidentally turn lead into gold

Medieval alchemists dreamed of transmuting lead into gold.

Today, we know that lead and gold are different elements, and no amount of chemistry can turn one into the other.

But our modern knowledge tells us the basic difference between an atom of lead and an atom of gold: the lead atom contains exactly three more protons. So can we create a gold atom by simply pulling three protons out of a lead atom?

As it turns out, we can. But it’s not easy.

While smashing lead atoms into each other at extremely high speeds in an effort to mimic the state of the universe just after the Big Bangphysicists working on the ALICE experiment at the Large Hadron Collider in Switzerland incidentally produced small amounts of gold.

Extremely small amounts, in fact: a total of some 29 trillionths of a gram.

How to steal a proton

Protons are found in the nucleus of an atom. How can they be pulled out?

Well, protons have an electric charge, which means an electric field can pull or push them around. Placing an atomic nucleus in an electric field could do it.

However, nuclei are held together by a very strong force with a very short range, imaginatively known as the strong nuclear force. This means an extremely powerful electric field is required to pull out protons – about a million times stronger than the electric fields that create lightning bolts in the atmosphere.

Keep reading

Medieval alchemy dream comes true: How physicists made gold from lead

In a breakthrough that would make medieval alchemists envious, scientists at Europe’s Large Hadron Collider have successfully transformed lead into gold, producing 89,000 atoms per second.

The Large Hadron Collider (LHC) is a giant particle accelerator that smashes atoms together at super-high speeds. Scientists there have found a way to knock three tiny particles called protons out of lead atoms, turning them into gold atoms.

The team behind this discovery, called the ALICE collaboration, used a unique way to create gold. Instead of crashing lead atoms head-on, they looked at what happens when the atoms just barely miss each other. Researchers explained that when this happens, powerful electromagnetic fields around the atoms can cause them to change into different elements.

“It’s impressive that our detectors can handle both major collisions that create thousands of particles and these smaller events that make just a few particles at a time,” Marco Van Leeuwen, who leads the ALICE project, said in a press release.

During one period of experiments from 2015 to 2018, the scientists created about 86 billion gold atoms. That sounds like a lot, but when you add up all that gold, scientists said it only weighs about 29 picograms, which is less than a trillionth of a gram. You’d need trillions of times more to make even a tiny piece of jewelry.

The machine can create about 89,000 gold atoms every second, but each atom only exists for a tiny fraction of a second before breaking apart. Recent upgrades to the machine have almost doubled the amount of gold it can make, but it’s still far from practical use.

According to Uliana Dmitrieva, a scientist for the ALICE collaboration, this is the first time scientists have been able to detect and study gold production at the LHC in this way.

“Thanks to the unique capabilities of the ALICE ZDCs, the present analysis is the first to systematically detect and analyse the signature of gold production at the LHC experimentally,” Dmitrieva said in the release.

Keep reading